A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy
نویسندگان
چکیده
Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.
منابع مشابه
Evaluating the Effect of Ta/W Ratio on Microstructure and Stress Rupture Properties of Ni-Based Single Crystal Superalloy PWA1483
In this study, the effect of Ta/W ratio on the microstructure and stress rupture properties of Ni-based single crystal (SX) superalloy PWA1483 was investigated. For this purpose, single crystal (SX) superalloys with different Ta/W ratios (0.75, 1.0, 1.32 and 1.5 in wt.%) were fabricated. The alloys were directionally solidified by Bridgman method under the same solidification condition at withd...
متن کاملEvaluation of microstructure and corrosion behavior of dissimilar laser joint between Inconel 625 and AISI 430 ferritic stainless steel
Dissimilar weld joints between stainless steels and nickel based super alloys are extensively used in petrochemical, gas and oil applications. These joints jave great challenges from metallurgical transformations point of view. In this research, microstructural evolutions and corrosion behavior of laser weld joint between Inconel 625 and AISI 430 ferritic stainless steel were investigated. Ferr...
متن کاملDetermination of solution temperature in an ex-service Ni-based turbine blade
It is well-known that the harsh operational conditions of turbine blades lead to a gradual change in the microstructure of underlying Ni-based superalloy of blades. According to this, a rejuvenation process should be conducted on turbine blades superalloys to recover their microstructures. The first and main step of rejuvenation process is the determination of appropriate solution condition in ...
متن کاملEvaluation of microstructure and corrosion behavior of dissimilar laser joint between Inconel 625 and AISI 430 ferritic stainless steel
Dissimilar weld joints between stainless steels and nickel based super alloys are extensively used in petrochemical, gas and oil applications. These joints jave great challenges from metallurgical transformations point of view. In this research, microstructural evolutions and corrosion behavior of laser weld joint between Inconel 625 and AISI 430 ferritic stainless steel were investigated. Ferr...
متن کاملSimulation of oxidation-nitridation-induced microstructural degradation in a cracked Ni- based superalloy at high temperature
In turbine engines, high temperature components made of superalloys may crack in a creep process during service. With the inward flux of the gases, e.g. oxygen and nitrogen, along those cracks, the microstructure of the superalloy substrate nearby the cracks may degrade by internal oxidation and nitridation. The aim of this study is to investigate and simulate the oxidation-nitridation-induced ...
متن کامل